Study of bacterial community dynamics during coconut leaf vermicompost production and in earthworm gut contents using pyrosequencing.

CONFERENCE PAPER · JANUARY 2011

CITATION
1

READS
36

6 AUTHORS, INCLUDING:

Murali Gopal
Central Plantation Crops Research Institute
68 PUBLICATIONS 205 CITATIONS

Kamlesh Jangid
National Centre For Cell Science, Pune
37 PUBLICATIONS 545 CITATIONS

William B Whitman
University of Georgia
205 PUBLICATIONS 12,803 CITATIONS

SR Prabhu
TerraBioGen Technologies Inc,
27 PUBLICATIONS 100 CITATIONS

Available from: Alka Gupta
Retrieved on: 03 November 2015
Study of bacterial community dynamics during coconut leaf vermicompost production and in earthworm gut contents using pyrosequencing


1Central Plantation Crops Research Institute
Kasaragod – 671 124, Kerala, India
2Department of Microbiology
University of Georgia, Athens – 30605, Georgia, USA
3International Bio Recovery Corporation, North Vancouver, Canada


Background:
Coconut palm (Cocos nucifera L) leaf litter, a recalcitrant waste available in large quantities in India, has been successfully recycled to vermicompost using an earthworm, Eudrilus sp. Vermicomposting depends greatly on the microorganisms, and studies on microbial diversity of vermicomposts using molecular methods have been reported. However, no information on the microbial community dynamics during the different vermicomposting stages using pyrosequencing is available.

Objective:
To study the bacterial community dynamics during coconut leaf vermicompost production and in the earthworm gut contents.

Method/Findings:
Genomic DNA was extracted from 12 conditions including i) coconut leaves+cow dung at different stages of decomposition ii) vermicompost and iii) gut contents of Eudrilus sp. The V1-V3 region of the bacterial 16s rRNA gene in the genomic DNA was amplified using barcoded primers for pyrosequencing (454 Gs-FLX). The ensuing data was analyzed using QIIME and MOTHUR packages and the SILVA database. A total of 142420 unique sequences were obtained from the substrate/vermicompost and earthworm gut contents. The Bacteroidetes and α-proteobacteria constituted 50% of the major taxonomic groups in the beginning and middle stages of the vermicomposting process, while the vermicompost had Bacteroidetes, Firmicutes, α-proteobacteria and γ-proteobacteria in equal proportions. The number of Firmicutes increased during the progress of vermicomposting. The earthworm gut contents had Actinobacteria, Firmicutes and α-proteobacteria in predominance.

Conclusions:
The 16s rRNA gene-based analyses revealed changes in the bacterial communities during vermicompost production from coconut leaves. Moreover, it showed that the vermicompost community was different than the gut contents of earthworm.